THE KCM ANNUAL CONFERENCE 2015
ENGAGE!
THE HILTON HOTEL
LEXINGTON, KY
MARCH 9-10, 2015

TITLE OF PRESENTATION: ENGAGE YOUR STUDENTS IN RICH PROBLEM

SOLVING TASK CORRELATING TO THE CCCS

DATE AND TIME: MONDAY, MARCH 9, 2015, 9:25 A.M.-10:35 A.M.

LOCATION: CRIMSON CLOVER

PRESENTER: JAY L. SCHIFFMAN

ROWAN UNIVERSITY



ENGAGE YOUR STUDENTS IN RICH PROBLEM SOLVING TASKS CORRELATING
TO THE CCCS

JAY L. SCHIFFMAN

Abstract: Good problem solving is paramount in our Common Core environment. This

workshop will engage participants in rich problem tasks selected from algebra, geometry,
number and operations, calculus and discrete mathematics. Participants working in small
groups will reason, explore connections among disciplines with these rich tasks and apply

appropriate tools strategically. Title: Engage Your Students in Rich Problem Solving Tasks
correlating to the CCCS.



SOME PROBLEMS AND DISCUSSION ACTIVITIES ON RICH PROBLEM SOLVING

TASKS RELATED TO THE CCCS:

I. A Fun Activity with the Fibonacci sequence.

Consider the sum of any six consecutive terms in the Fibonacci sequence. Form the sum
and divide by four. Try this with three different numerical data sets. Form a conjecture.
Can you prove your conjecture? Repeat this problem for the sum of ten consecutive terms
in the Fibonacci sequence. Form the sum and divide by eleven. Next consider the sum of
any fourteen consecutive terms in the Fibonacci sequence. Form the sum and divide by
twenty-nine.

I1. Determine what occurs when one adds and multiplies the various combinations of even
and odd integers. Form conjectures and create a table. Then try to justify formally.

I11. Consider a rectangle with perimeters 20 and 32 units respectively. Determine the areas
of all such rectangles having integer lengths and secure the dimensions of the rectangles
with the largest possible areas. What do you conclude? Provide the necessary constraints
on the dimensions of the rectangles. Can you generalize?

IV. Consider the sum of two consecutive unit fractions with even denominators such as
E+£. Do this for the first fifteen iterations. (i.e. Consider %+% %+% etc.) What do you

notice when considering the numerators and denominators in each of these sums? Repeat

this with the sum of two consecutive unit fractions with odd denominators such as §+%

Repeat for fifteen iterations. What do you notice about the numerators and denominators
in the sums? Do you see any connections to geometry?

V. Consider the entries in each row of Pascal’s Triangle with regards to their parity
(whether an entry is even or odd). Extend to thirty two rows of the triangle. Count the
number of even and odd entries in each row. Form a table giving the cumulative total of the
even entries, the odd entries, and the total number of entries. Are there any rows which
have all odd entries? Are there any rows which have all even entries save the first and last
1’s? Determine the ratio of the cumulative number of even entries to the total number of
entries in the triangle. Form conjectures for all of the above. Use the calculator to
determine the entries in the first five rows of the triangle as well as both the sum and
cumulative sum of the entries in the initial five rows. Look at the entries on the first,
second, third, fourth and fifth diagonals in the triangle. Find polynomial functions that fit
the data. Generalize. Use the calculator to determine the entries in the first five rows of the
triangle as well as both the sum and cumulative sum of the entries in the initial five rows.



V1. Consider the calendar for the month of MARCH 2015 below:

MARCH 2015
S M T W R F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

a. Select several 3x3groups of numbers and find the sum of these numbers. Determine
how the obtained sums related to the middle number.

b. Prove that the sum of any 9 integers in any 3x3 set of numbers selected from a monthly
calendar will always be equal to 9 times the middle number. Use algebra and technology to
furnish a convincing argument.

VI1. Determine if each of the following statements is true or false. If it is true, construct a
formal proof. For all false statements, determine an appropriate counterexample and
explain what needs to be altered to make the false statements true.

(a). The product of any three integers is divisible by 2.

(b). The sum of four consecutive integers is divisible by 4.

(c). The product of four consecutive integers plus one is always a perfect square.

(d). The sum of two prime numbers is never a prime number.

(e). The sum of five consecutive integers is divisible by 5.

(. If the sides of a right triangle are tripled, then both the perimeter and area of the right
triangle are tripled.



SOLUTIONS TO SOME PROBLEMS AND DISCUSSION ACTIVITIES ON RICH

PROBLEM SOLVING TASKS RELATED TO THE CCCS

I. A Fun Activity with the Fibonacci sequence

We generate the Fibonacci sequence on the HOME SCREEN. First recall the famous Fibonacci
sequence is recursively defined as follows:

Define FF=F,=1and F, =F,_,+F,, forn>3. Here F, =the nth term of the Fibonacci

sequence. We use the VOYAGE 200 to generate the initial forty outputs in the Fibonacci
sequence. See FIGURES 1-7:
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In FIGURE 1, on The HOME SCREEN, we entered the initial two terms to start the recursion
which are both 1 and then used the command ans(2) +ans(l) followed by ENTER. This will
furnish the sum of the next to the last answer on the HOME SCREEN followed by the last
answer on the HOME SCREEN. Keep pressing ENTER to generate new terms of this sequence.
See FIGURES 2-7:
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If one reads this data, they see two numbers on the bottom right; for example in FIGURE 5, one
sees 28/99. The 28™ term is the last answer in FIGURE 5 and is 317811. There are 99 possible
answers retained by the calculator. One can adjust this last number. From the HOME SCREEN,
use the keystrokes F1 9: Format (see FIGURE 8) and press ENTER. You will see what is called
History Pairs and use the right arrow cursor to see the choices, which indicate the number of
answers one can recover from the HOME SCREEN (see FIGURES 9-10). The factory setting
for the History Pairs is 30.
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Based on the data in FIGURES 2-7, we conjecture that every fourth Fibonacci integer is
divisible by three.

F,=3F, =21 F, =144 F, =987, F, =6765
F, =5, F, =55, F,, =610, F,, = 6765, F,, = 75025 .
F, =21, F, =987, F,, =46368, F,, = 2178309, F,, =102334155

Proceeding to SEQUENCE GRAPHING (use the keystrokes MODE followed by the right arrow
cursor to option 4. SEQUENCE followed by ENTER), we see an SEQ at the bottom of the
HOME SCREEN. See FIGURES 11-12:



CL
HMODE

o

a1 b a|cate [t her Pranio|clean Us| |

[P'argie ITPange ZTPaFgge 3]

G
Curtent Folder....
Oizplay Digits....
[ L= E=
Exponential Faormat
Complex Format....
Uector Format.....
~ Pretty Print......

. Enter=5SAUE

1:FUMCTIOH
2:PARAMETRIC
I POLAR

e -

ESC=CAMCEL

HAlN ERD AUTO

FIGURE 11

Next proceed to the Y= EDITOR and input the following as in FIGURE 13 with the Standard
Viewing Window, Graph, Table Setup, and a portion of the TABLE in FIGURES 14-20:
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Some Comments on the above screen captures:

1. In FIGURE 13, note that the recursion rule is provided on the line headed by

ulwhile the line headed by uil records the initial two terms of the sequence, the second
followed by the first. There is no comma between the two 1’s in Pretty Print although one
separates the two initial 1’s with a comma on the entry line. See FIGURE 21:
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2. Note from FIGURE 15 that 5 is the fifth term of the Fibonacci sequence.

3. Since a sequence is a function whose domain is the set of positive integers, the Tbl Start
begins at 1 in FIGURE 16.

4. Only five figures are possible in any cell. Thus all terms of the Fibonacci sequence after the
twenty-fifth are expressed in scientific notation. If one places their cursor on the output value,
however, the exact value is determined as in FIGURE 20 where the thirtieth term is given
exactly as 832040.

Thus if one considers the famous Fibonacci sequence or any Fibonacci-like sequence (that is a
sequence whose first two terms can be anything one pleases but each term thereafter follows the
recursion rule in the Fibonacci sequence), form the sum of any six consecutive terms and divide
this sum by four. We do this for three separate sets and form a conjecture. The results are
tabulated in the following TABLE:

SUM OF SIX
CONSECUTIVE
FIBONACCI NUMBERS:

SUM OF THE MEMBERS
OF THE SET:

QUOTIENT WHEN THE
SUM IS DIVIDED BY 4:

{2,3,5,8,13 21} 52 13...FIFTH TERM
{112,358} 20 5...FIFTH TERM
1508 377...FIFTH TERM

{55,89,144, 233,377,610}

CONJECTURE: The sum of any six consecutive Fibonacci numbers is divisible by 4 and
the quotient will always be the fifth term in the sequence.




Proof: Consider the initial two terms of the Fibonacci sequence to be xand y. The six
consecutive terms of the sequence are as follows: {x, y, x+y, x+2-y,2-x+3-y, 3-x+5-y}. We
employ the VOYAGE 200 to form the sum and divide the resulting sum by 4. See FIGURE 21:
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Let us next form the sum of any ten consecutive integers and divide this sum by 11. View this for
three separate sets and form a conjecture. The results are tabulated below:

View this for three separate sets and form a SUM OF THE QUOTIENT WHEN

conjecture. The results are tabulated below: MEMBERS OF THE SUM IS

SUM OF TEN CONSECUTIVE FIBONACCI | THE SET: DIVIDED BY 11.:

NUMBERS:

{2,3,5,8,13,21,34,55,89,144} 374 34...SEVENTH
TERM

{1,1,2,3,5,8,13,21,34,55} 143 13...SEVENTH
TERM

{55,89,144, 233,377,610,987,1597, 2584, 4181} 10857 987...SEVENTH
TERM

CONJECTURE: The sum of any ten consecutive Fibonacci numbers is divisible by 11 and
the quotient will always be the seventh term in the sequence.

Proof: Consider the initial two terms of the Fibonacci sequence to be xand y. The ten
consecutive terms of the sequence are as follows:

{x, YV, X+Y,X+2:-¥,2-X+3-Y,3:X+5-y,5-Xx+8-y,8-x+13-y,13- x+21- y, 21- x+ 34- y} Let us
employ the TI-89 to form the sum and divide the resulting sum by 11. See FIGURES 22-25:
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FIGURE 23

1 Few F3r 1. F4™ FE [
- E ngebr‘aTEalcTDther‘TPr‘ngDTEleah Up

EAS g+ S+ 139+ 13w+ 21 g+ 21+ 34y
IR == R

S-x+8-y

EAD AUTD

FIGURE 25

Notice5-x+8-y is the seventh term in the sequence which is a neat Fibonacci number trick.

Let us next form the sum of any fourteen consecutive integers and divide this sum by 29 for three
separate sets and form a conjecture. The results are tabulated below:

SUM OF FOURTEEN CONSECUTIVE SUM OF THE QUOTIENT WHEN
FIBONACCI NUMBERS: MEMBERS OF THE SUM IS
THE SET: DIVIDED BY 29:
{2,3,5,8,13,21,34,55,89,144, 233, 377, 610, 987} | 2581 89...NINTH TERM
{1,1,2,3,5,8,13,21,34,55, 89, 144, 233, 377 986 34...NINTH TERM
55,89,144, 233,377, 610,987,1597, 2584, 74936 2584.. NINTH
4181,6765, 10946, 17711, 28657 TERM

CONJECTURE: The sum of any fourteen consecutive Fibonacci numbers is divisible by 29
and the quotient will always be the ninth term in the sequence.

Proof: Consider the initial two terms of the Fibonacci sequence to be xand y. The fourteen
consecutive terms of the sequence are as follows:

X Y, X+Y, X+2:-y,2-X+3-Y,3-X+5-y,5-Xx+8-y,8-x+13-y,13-x+21-y,21-x+ 34"y,
34-x+55-y,55-x+89-y, 89-x+144-y, 144-x+233-y
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The VOYAGE 200 is used to form the sum and divide the total by 29. See FIGURES 26-30:
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Il. If E represents the set of even integers and O connotes the set of odd integers, then empirical
evidence for the four possible combinations of addition scenarios:
E+E=E,E+O=0,0+E=0,and O+0 =E and the four possible combinations of
multiplication scenarios: E-E=E,E-O=E,O-E=E,and O-O=0. See FIGURES 31-38
respectively below with the aid of The VOYAGE 200 CAS Calculator from Texas Instruments:
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Based on reasoning inductively to a general conclusion via the observations of five specific
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cases, one can conjecture the following displayed in TABLES 1 and 2:

+ |E |O
E |E |O
O |0 |E
TABLE 1
x [E|O
E |E|E
O |E|O
TABLE 2
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To furnish a formal proof, we appeal to the definitions of even and odd integers:

We will verify each of the four cases.

(i). To prove that E+E =E, let a,beE. Then 3k,1 eZ 5(st.)a=2-k(10) and b=2-1(11).
Now a+b=2-k+2:1=2-(k+l). k,leZ=k+1eZ. Call k+]=s.Hence

a+b=2.s=a+beE. o

(if). To prove O+E =0, let acOand b € E. One can secure
k,IeZaazz-k+1(12)and b=2-|(13).

Next note that a+b:2-k+2~l+1:(2~k+2-l)+1:2~(k+|)+1.0bserve that
k,leZ=k+IleZ. Denote k+I=s. Hence a+b=2-s+1=a+beO. o

(ii1). To show that ExO =E, let a< E and b € O. One can thus find
k,leZ>a=2-k(13) and b=2-1+1(14).

a-b=(2-k)-(2:-1+1)=2-k-2-1+2-k-1=4-k-1+2-k =2-(2-k-1+k). Appealing to the facts
that k,leZ=k+leZand k-l € Z, we obtain 2-k-l+k €Z.(Recall that 2 € Z.) Call
2-k-1+k=u. Hence a-b=2-u=a-beE. o©

(iv). To prove our final case and demonstrate that OxO =0, let a,b €O. Then by definition,
3k,leZ>a=2-k+1(15) and b=2-1+1(16). Now

a-b=(2-k+1)-(2-1+1)=4-k-1+2-k+2-1+1=(4-k-1+2-k+2-1)+1=2-(2-k- 1 +k+1)+1.
Employing the closure properties of +and x inZ, one is assured that 2-k-1+k +1 € Z. Call
2:k-1+k+l=v. Thus a-b=2-v+1=a-beO. o©

I11. We know that the areas and perimeters of rectangles are given by the respective formulas
A=l-wand P=2:1+2-w=2-(l1+w); | =length and w=width. A student in the earlier grades
might form tables such as the following for the respective perimeters of 20 and 100:

| W P: A:
10 0 20 0

9 1 20 9

8 2 20 16
7 3 20 21
6 4 20 24
5 5 20 25
4 6 20 24
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3 7 20 21
2 8 20 16
1 9 20 9

0 10 20 0

| W: P: A:
16 0 32 0

15 1 32 15
14 2 32 28
13 3 32 39
12 4 32 48
11 5 32 55
10 6 32 60
9 7 32 63
8 8 32 64
7 9 32 63
6 10 32 60
5 11 32 55
4 12 32 48
3 13 32 39
2 14 32 28
1 15 32 15
0 16 32 0

Based upon the outcomes in the table, it appears that the area of the largest rectangles having
respective perimeters of 20 and 32 are the respective 5x5 and 8x8squares. Is this always the
case; namely that the area of largest rectangle having a given perimeter is necessarily a square
whose length is one-quarter of the perimeter? Stay tuned. Progressing along, the student of
algebra can graph the equations for the area utilizing algebra. For example, if

P=20, then 2-(1+w)=20=1+w=10=w=10-1= A=l-w= A=1-(10-1)= A=10-1-1°,
Using the TI1-84 or the TI1-89, one can graph this equation and secure the maximum area (see
FIGURES 39-48):
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On the other hand, if

P =32, then 2-(I+W)=32:>I +w=16=>w=16-1= A=I -W:>A:I-(16—I):>A:16-I -2,
Using the T1-84 or the T1-89, one can graph this equation and secure the maximum area (see

FIGURES 49-59):
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Observe that there are constraints on | and w; namely that 0 <| sg and 0<w< g;for

otherwise the other dimension would be negative. Hence for rectangles having perimeters 20 and
32 respectively, the lengths and widths could not exceed 10 and 16 respectively. We still have
not resolved the general question; namely what is the area of the largest rectangle having a given
perimeter P?We prove using calculus that one always obtains a square each of whose sides has

P
length | = —.
g 4

A=Il-w (1) and P=2-1+2-w. (2) The area formula represents the primary equation; for we are

seeking to maximize this quantity and the perimeter formula which serves to aid us in our task is
the secondary equation. Solving (2) for w and substituting into (1), we obtain

P=21+2w=P-2:1=2.-w=> P—22-I =g—l =w= A(I)=I-(§—IJ=PT'I—I2.(3)

Differentiating (3) with respect to | and setting z—'la‘ =0, we obtain

d—A=E—2~I and d—A=O<:>E—2-I =0<:>E=2-I <:>E= I 1 =Erepresents the critical

dl 2 dl 2 2 4 4

number of the area function A(I).Using the second derivative test for relative extrema, we note
d’A

di®

2
this value into (2), one obtains A(E] = (E)(E—Ej = (EJ(EJ = P—. To see that this is the
4 4)\2 4 4)\4) 16

largest possible area, note that since A(I) is a polynomial function and hence continuous over

that =2<0=1= ; leads to a relative maximum of the area function A(I ) Substituting

R and hence over [0, ;} c R, the Extreme Value Theorem guarantees the existence of both an

) .. P
absolute maximum M and an absolute minimum m somewhere over [O'E} We use the

Tabular Method below to locate the absolute extrema where the largest of the tabulated values

17



represents the absolute maximum of the area function over the interval and the smallest of the
tabulated values represents the absolute minimum of the area function over the interval:

l: P-I
Al =—-1°

(=5

0 0

P P’

4 16

E 0

2

| A 2 — 2 2 2
Note that A(Ej:_z_(fj :L—P—:P——P—zo. Hence the maximum area is
2 2 2 2 4 4 4

obtained when one has a ;x; square.

IV. If we add successive unit fractions with even denominators, starting with > we obtain the

following for fifteen iterations in FIGURES 60-62:
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Similarly if we add successive unit fractions with odd denominators starting with 1/3, we obtain
the following for fifteen iterations in FIGURES 63-65:

18




1 et 3| ate [t her PranTo|clean Us| | P SELES N LA S LI (T LIpm

LI A P 8s15

BS54+ 147 1235 =115+ 1-1F 255

w17+ 1.9 1663 36

" 1941011 2899 "loA7 113 23

24 40

ml1A11+1-13 T4z mlA19+ 121 Sag
=28 A4

m1-13+ 115 155 m1-21 + 1023 o

1-13+1-15 1-21+1-23

MAIN FAD ADTO FUNC 6758 MAIN FAD ADTO FUNE 10,88

FIGURE 63 FIGURE 64

ngebr‘a Ealc, Dther*TPr‘ngDTClean Upﬁ

B ]sEE 4125

5?5
52
B 125+ 1427 =5
S5
LI vl o Wl =
[=10]
m1-29 4 1031 59
1-29+1.-31
AN FAD AUTO FUMC 14,89
FIGURE 65

Consider the numerators and denominators of the sums obtained in FIGURES 60-65. We find
that all form the legs of Primitive Pythagorean Triangles. In FIGURES 66-75, we show that the
sum of the squares of the numerators and denominators of each of these fractions is a perfect

square and hence a Pythagorean Triple is formed. Moreover, since (a, b, c) =1 in the sense that
there are no common integer factors other than 1 among the components, the triples are classified

as Primitive Pythagorean triples.
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Are these results always true and are all Primitive Pythagorean Triples obtained in this manner?
The answers are YES and NO respectively. The latter question can be resolved by noting that the
PPT (77, 36, 85) is not generated by this process. See FIGURE 76 below. See FIGURES 78-81
for a general proof considering the cases of the sum of consecutive even unit fractions and the
sum of consecutive odd unit fractions separately with FIGURE 77 displaying the relevant
Algebra Menu F2 on the T1-89/VOYAGE 200.

1
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FIGURE 76

One can show that the following is true in general. If we consider that any even integer is of the
form 2-m for some integer m and any odd integer is of the form 2-n+1 for some integer n,
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then we have the following for the sum of two unit fractions with consecutive even
denominators:

1 N 1 2m+1
2m 2-m+2 2-m*+2-m
of this fraction, we note

. Taking the sum of the squares of the numerator and denominator

(2~m+1)2+(2-m2+2~m)2 =4~m4+8-m3+8~m2+4-m+1=(2-m2+2~m+1)2. Hence one

obtains the Primitive Pythagorean triple (2~m+L 2-m>+2-m, 2-m? +2-m+1).

For the sum of two unit fractions with consecutive odd denominators, we observe the following:

1 N 1 4n+4
2-n+1 2-n+3 4-n*+8-n+3
denominator of this fraction, we note that

(4-n+4) +(4-n* +8-n+3) =16-n* +64-n° +104-n* +80-n+25=(4-n> +8-n+5) . Thus

. Taking the sum of the squares of the numerator and

one obtains the Primitive Pythagorean Triple (4~n+4, 4.n°+8-n+3, 4-n°+8-n+5 )
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V. For your convenience, here are the first five rows of Pascal’s Triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Based on the initial five rows of Pascal’s Triangle, the next five rows are displayed. Let us write
Rows 0-10 as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 120 252 210 120 45 10 1

In the following table, we determine the parity of the entries in the initial twenty-five rows of
Pascal’s Triangle where O and E denote the respective odd and even numbered entries.

@)

0|0
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Our next goal is to tabulate in each row of the triangle constructed above the numbers of odd
entries, even entries, total entries, the cumulative number of odd entries, even entries and total
entries and the ratio of the cumulative number of even and odd entries to the cumulative to the
cumulative total. Recall that the initial row is considered row 0. We extend the triangle to the
thirty-second row and observe some neat patterns. The analysis of the patterns is then employed

to form some nice conjectures.

Row | # of Odds | # of Total | Cum# | Cum# | Cum# | Ratio of Ratio of

Evens of Odds | of Evens Cum Odds | Cum Evens
to Cum # to Cum #

0 1 0 1 1 0 1 1/1 0/1

1 2 0 2 3 0 3 3/3 0/3

2 2 1 3 5 1 6 5/6 1/6

3 4 0 4 9 1 10 9/10 1/10

4 2 3 5 11 4 15 11/15 4/15

5 4 2 6 15 6 21 15/21 6/21

6 4 3 7 19 9 28 19/28 9/28

7 8 0 8 27 9 36 27/36 9/36

8 2 7 9 29 16 45 29/45 16/45

9 4 6 10 33 22 55 33/55 22/55

10 |4 7 11 37 29 66 37166 29/66

11 8 4 12 45 33 78 45/78 33/78

12 4 9 13 49 42 91 49/91 42/91

13 8 6 14 57 48 105 57/105 48/105

14 8 7 15 65 55 120 65/120 55/120

15 16 0 16 81 55 136 81/136 55/136

16 2 15 17 83 70 153 83/153 70/153

17 4 14 18 87 84 171 87/171 84/171
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18 4 15 19 91 99 190 91/190 99/190

19 8 12 20 99 111 210 99/210 111/210
20 4 17 21 103 128 231 103/231 128/231
21 8 14 22 111 142 253 111/253 142/253
22 8 15 23 119 157 276 119/276 157/276
23 16 8 24 135 165 300 135/300 165/300
24 4 21 25 139 186 325 139/325 186/325
25 8 18 26 147 204 351 147/351 204/351
26 8 19 27 155 223 378 155/378 223/378
27 16 12 28 171 235 406 171/406 235/406
28 8 21 29 179 256 435 179/435 256/435
29 16 14 30 195 270 465 195/465 270/465
30 16 15 31 211 285 496 211/496 285/496
31 32 0 32 243 285 528 243/528 285/528
32 2 31 33 245 316 561 245/561 316/561

A number of interesting conjectures can be formed via the analysis of the above table:

1. The entries inrows 1, 3, 7, 15, and 31 are all odd. One can correctly conjecture that the only
rows where all the entries are odd are of the form 2" -1;ne N.

2. The entries in rows 2, 4, 6, 8, 16, and 32 with the exception of the first and last entries which
are both 1 are even. This in general occurs in rows of the form 2";n e N and is an immediate
consequence of the first conjecture and the binomial identity
C(nr)=C(n-1Lr-1)+C(n-1r);r<n.

3. With the exception of Row 0, the number of odd entries in any row of Pascal’s Triangle is
always even. This is a consequence of the symmetry of the binomial coefficients as manifested
by the identity C(n,r)=C(n,n—r).

4. The number of odd entries in any row of Pascal’s Triangle is a power of two.
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5. The ratio of the cumulative total of even entries to the total number of entries approaches 1 as
the number of rows in the triangle gets large. To cite some examples, the cumulative total of
even entries to total entries is 1351/2080 by the time we reach row sixty-four and 6069/8028
when we reach row one hundred twenty-eight.

Based on the entries in Pascal’s triangle written in rectangular fashion, the initial five diagonals
(left and right) contain the respective entries 1, 1, 1, 1, 1,...; 1,2, 3,4, 5,...; 1, 3, 6, 10, 15, 21,
28,...; 1,4, 10, 20, 35, 56, 84, 120; and 1, 5, 15, 35, 70, 126, 210,... One can find a polynomial
model that fits the data with perfect correlation every time! The respective polynomials are
’ n-(n+1) n-(n+1)-(n+2) and n-(n+1)-(n+2)-(n+3)
2 6 24
entries along the first, second, third, fourth and fifth diagonals (left and right) model constant,
linear, quadratic, cubic, and quartic polynomials respectively. One can utilize the method of
successive (finite) differences to observe that the set of zero, first, second, third and fourth
differences are constant respectively. For example, let us consider the entries along the fifth
diagonal; namely 1, 5, 15, 35, 70, 126, 210, .... To see that this set of data models a quartic
(fourth degree) polynomial, we consider the ordered pairs where the first, second, third, fourth,
fifth terms respectively are 1, 5, 15, 35, 70 and 126. This leads to the ordered pairs

(L1), (2,5), (3.15), (4,35) and (5,70). One needs five distinct data points to secure a fourth

degree polynomial since the form for quartics is y = f (x)=A-x*+B-x*+C-x*+D-x+E.

respectively. In other words, the

Observe the five unknown constants A, B,C,D and E need to be determined.

Sequence: 1 5 15 35 70 126 210
Set of First Differences: 4 10 20 35 56 84

Set of Second Differences: 6 10 15 21 28

Set of Third Differences: 4 5 6 7

Set of Fourth Differences: 1 1 1

If we choose the first five ordered pairs, this leads to the 5x5 linear system:

A+ B+ C+ D+E=1

16A + 8B +4C +2D+E= 5
81A+ 27B +9C +3D +E =15
256A + 64B +16C +4D+E =35
625A +125B +25C +5D+E =70

Using the VOYAGE 200 (one could have also used the T1-84), we solve our linear system. See
FIGURES 82-88:
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Observe that y = f (x) = i x* +%- X3 +% - X? +%- xwhich fits these data points. If we factor

the expression via the VOYAGE 200, we obtain the factored form in FIGURES 89-90:
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In general, one can show by mathematical induction that the entries on the k-th diagonals of

Pascal’s triangle fit the polynomial model y = f (x)=

x-(x+1)-(x+2)-(x+3)-...(x+k—l).
k!

We determine the entries in the first five rows of the triangle and both the sum and cumulative
sum of the entries in the initial five rows. See FIGURES 91-96:
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V1. Consider the calendar for the month of MARCH 2015 below:
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MARCH 2015

S M T W R F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

a. We select several 3x3groups of numbers and find the sum of these numbers and determine
how the obtained sums are related to the middle number.

We first consider the group highlighted in blue above. The integers are 8, 9, 10, 15, 16, 17, 22,
23 and 24 with the middle number being 16. Adding these nine numbers, we obtain
8+9+10+15+16+17+22+23+24=144=9-16.

Let us next select a second 3x 3 group of numbers highlighted in green below. These numbers
are 11, 12, 13, 18, 19, 20, 25, 26 and 27 with 19 serving as the middle number. We note that
11+12+13+18+19+20+25+26+27 =171=9-19.

MARCH 2015
S M T W R F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

We finally select a third 3x3group of numbers highlighted in red below. These numbers are 12,
13,14, 19, 20, 21, 26, 27 and 28 where 20 is the middle number. Note that
12+13+14+19+20+21+26+27+28=180=9-20.
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FEBRUARY 2015

S M T w R F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

b. We next prove that the sum of any 9 digits in any 3x3 set of numbers selected from a
monthly calendar will always be equal to 9 times the middle number using both algebra and
technology to furnish a convincing argument.

Based on our analysis of three specific cases, it seems plausible to conjecture that the sum of any
nine elements in the 3x 3 group is always nine times the middle number. To show that this is
always true, one can employ algebraic reasoning. We let x = the first number in the array. The
next numbers are thus x+1, x+2, x+7, Xx+8, x+9, x+14, x+15 and x+16. Next note that

x+x+1+x+2+x+7+x+8+x+9+x+14+x+15+x+16:9x+72=9-(x+8). Observe that
X+8is the median (middle number) in the array completing our proof.

Technology can play a role as well. Let us use a graphing calculator (T1-89) to furnish the
specific cases as well as a formal proof. See FIGURES 97-100:
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VI1. We determine if each of the following statements is true or false. If it is true, construct a
formal proof. For all false statements, determine an appropriate counterexample and explain
what needs to be altered to make the false statements true.

(a). The product of any three integers is divisible by 2 is false. Consider the odd integers 3, 5 and
7. Then 3-5-7 =105 and 2 } 105. On the other hand, the product of three consecutive integers is
divisible by 2. In addition, the product of three integers, two of which are of even parity is even
and hence is divisible by 2. Likewise, the product of three integers such that two are of odd
parity is even and hence is divisible by 2.

(b). The sum of four consecutive integers is divisible by 4 is false. Consider the consecutive
integers 5, 6, 7 and 8. Then 5+6+7+8=26 and 4 | 26. Moreover, the sum of four consecutive

integers is NEVER divisible by 4. To see this, we appeal to the algebra of remainders. In any
string of four consecutive integers, if the first is evenly divisible by four, the second will have a
remainder of one upon division by four, the third will have a remainder of two upon division by
four and the fourth will have a remainder of three upon division by four. A similar proof can be
constructed in the respective cases where the first integer in the sequence has a remainder of one,
two and three upon division by 4. Just shift accordingly. Hence the sum of the remainders will be
six which when reduced modulo four is two. It is true that the sum of any four consecutive
integers is always even and thus divisible by two.

(c). The product of four consecutive integers plus one is always a perfect square is indeed true.
Let the consecutive integers be denoted respectively by n, n+1, n+2 and n+3. Then

n-(n+1)-(n+2)-(n+3)+1=n*+6-n’+11-n* +6-n+1= (n2 +3- n+1)2 .This can be verified
using the T1-89/VOYAGE 200. See FIGURES 101-102:
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(d). The sum of two prime numbers is never a prime number is false! Consider the prime integers
2 and 5. Then 2+5=7which is also a prime number. What is true is that the sum of two odd
prime numbers is never a prime; for such a sum yields an even integer which is greater than two
and hence has two as a divisor and thus is not prime.

(e). The sum of five consecutive integers is divisible by 5 is indeed true; for if we denote the five
consecutive integers by n, n+1, n+2, n+3 and n+4, then

n+(n+1)+(n+2)+(n+3)+(n+4)=5-n+10=5-(n+2).Notice that the sum of the five
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consecutive integers is five times the median which is n+2. One can verify this via our graphing
calculator. See FIGURE 103:

] TEEAN IS4 TR AT SRCINE

Bexpandintn+l+n+2+n+3+n+4

Sntlo
a5n10 o
ans%1 3.5
FMAIN ERD AUTO FUMC /89
FIGURE 103

(F). If the sides of a right triangle are tripled, then both the perimeter and area of the right triangle
are tripled is false. While the perimeter is indeed tripled, the area is increased nine-fold. To cite
an example, consider the 3-4-5 right triangle. Note that 3* +4* =9+16 = 25 =5°. This triangle
has a perimeter of 12 (P =a+b+c=3+4+5=12)and an area of 6

(A = % -a-b= %-3- 4= %-12 = 6].Trip|ing the sides of the 3-4-5 right triangle yields the similar

right triangle 9-12-15. The perimeter is 36 and the area is 54. The new perimeter is three times
the original perimeter while the new area is nine times the original area. FIGURE 104 utilizing
the graphing calculator can furnish a formal proof where the area of any right triangle is equal to
the product of its legs while the perimeter is the sum of all of its sides. Let the legs be denoted by
a and b and the hypotenuse by c.
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THANK YOU FOR YOUR PARTICIPATION AT THIS WORKSHOP DURING THE
THE 7™ ANNUAL KCM CONFERENCE ENGAGE 2015 IN LEXINGTON, KY!
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