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ENGAGE YOUR STUDENTS IN RICH PROBLEM SOLVING TASKS CORRELATING  

TO THE CCCS 

JAY L. SCHIFFMAN  

 

Abstract: Good problem solving is paramount in our Common Core environment. This 

workshop will engage participants in rich problem tasks selected from algebra, geometry, 

number and operations, calculus and discrete mathematics. Participants working in small 

groups will reason, explore connections among disciplines with these rich tasks and apply 

appropriate tools strategically. Title: Engage Your Students in Rich Problem Solving Tasks 

correlating to the CCCS.  
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SOME PROBLEMS AND DISCUSSION ACTIVITIES ON RICH PROBLEM SOLVING  

TASKS RELATED TO THE CCCS: 

I. A Fun Activity with the Fibonacci sequence. 

Consider the sum of any six consecutive terms in the Fibonacci sequence. Form the sum 

and divide by four. Try this with three different numerical data sets. Form a conjecture. 

Can you prove your conjecture? Repeat this problem for the sum of ten consecutive terms 

in the Fibonacci sequence. Form the sum and divide by eleven. Next consider the sum of 

any fourteen consecutive terms in the Fibonacci sequence. Form the sum and divide by 

twenty-nine.  

 

II. Determine what occurs when one adds and multiplies the various combinations of even 

and odd integers. Form conjectures and create a table. Then try to justify formally. 

III. Consider a rectangle with perimeters 20 and 32 units respectively. Determine the areas 

of all such rectangles having integer lengths and secure the dimensions of the rectangles 

with the largest possible areas. What do you conclude? Provide the necessary constraints 

on the dimensions of the rectangles. Can you generalize? 

IV. Consider the sum of two consecutive unit fractions with even denominators such as 

1 1
.

2 4
  Do this for the first fifteen iterations. (i.e. Consider 

1 1 1 1
, ,

4 6 6 8
  etc.) What do you 

notice when considering the numerators and denominators in each of these sums? Repeat 

this with the sum of two consecutive unit fractions with odd denominators such as 
1 1

.
3 5
  

Repeat for fifteen iterations. What do you notice about the numerators and denominators 

in the sums? Do you see any connections to geometry? 

V. Consider the entries in each row of Pascal’s Triangle with regards to their parity 

(whether an entry is even or odd). Extend to thirty two rows of the triangle. Count the 

number of even and odd entries in each row. Form a table giving the cumulative total of the 

even entries, the odd entries, and the total number of entries. Are there any rows which 

have all odd entries? Are there any rows which have all even entries save the first and last 

1’s? Determine the ratio of the cumulative number of even entries to the total number of 

entries in the triangle. Form conjectures for all of the above.  Use the calculator to 

determine the entries in the first five rows of the triangle as well as both the sum and 

cumulative sum of the entries in the initial five rows. Look at the entries on the first, 

second, third, fourth and fifth diagonals in the triangle. Find polynomial functions that fit 

the data. Generalize. Use the calculator to determine the entries in the first five rows of the 

triangle as well as both the sum and cumulative sum of the entries in the initial five rows. 
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VI. Consider the calendar for the month of MARCH 2015 below: 

                                              MARCH 2015 

S M T W R F S 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

       

a. Select several 3 3 groups of numbers and find the sum of these numbers. Determine 

how the obtained sums related to the middle number. 

b. Prove that the sum of any 9 integers in any 3 3  set of numbers selected from a monthly 

calendar will always be equal to 9 times the middle number. Use algebra and technology to 

furnish a convincing argument. 

VII. Determine if each of the following statements is true or false. If it is true, construct a 

formal proof. For all false statements, determine an appropriate counterexample and 

explain what needs to be altered to make the false statements true. 

(a). The product of any three integers is divisible by 2. 

(b). The sum of four consecutive integers is divisible by 4. 

(c). The product of four consecutive integers plus one is always a perfect square. 

(d). The sum of two prime numbers is never a prime number. 

(e). The sum of five consecutive integers is divisible by 5. 

(f). If the sides of a right triangle are tripled, then both the perimeter and area of the right 

triangle are tripled. 
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SOLUTIONS TO SOME PROBLEMS AND DISCUSSION ACTIVITIES ON RICH  

PROBLEM SOLVING TASKS RELATED TO THE CCCS 

I. A Fun Activity with the Fibonacci sequence 

We generate the Fibonacci sequence on the HOME SCREEN. First recall the famous Fibonacci 

sequence is recursively defined as follows: 

Define 1 2 2 11 3.n n nF F and F F F for n       Here nF  the nth  term of the Fibonacci 

sequence. We use the VOYAGE 200 to generate the initial forty outputs in the Fibonacci 

sequence. See FIGURES 1-7: 

 

 
FIGURE 1 

 

In FIGURE 1, on The HOME SCREEN, we entered the initial two terms to start the recursion 

which are both 1 and then used the command (2) (1)ans ans  followed by ENTER. This will 

furnish the sum of the next to the last answer on the HOME SCREEN followed by the last 

answer on the HOME SCREEN. Keep pressing ENTER to generate new terms of this sequence. 

See FIGURES 2-7: 

 

        
FIGURE 2 FIGURE 3 

 

        
FIGURE 4 FIGURE 5 
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FIGURE 6  FIGURE 7   
 

If one reads this data, they see two numbers on the bottom right; for example in FIGURE 5, one 

sees 28/99. The 28
th

 term is the last answer in FIGURE 5 and is 317811. There are 99 possible 

answers retained by the calculator. One can adjust this last number. From the HOME SCREEN, 

use the keystrokes F1 9: Format (see FIGURE 8) and press ENTER. You will see what is called 

History Pairs and use the right arrow cursor to see the choices, which indicate the number of 

answers one can recover from the HOME SCREEN (see FIGURES 9-10). The factory setting 

for the History Pairs is 30. 

 

         
FIGURE 8 FIGURE 9 

 

 
FIGURE 10 

 

Based on the data in FIGURES 2-7, we conjecture that every fourth Fibonacci integer is 

divisible by three. 

 

4 8 12 16 20

5 10 15 20 25

8 16 24 32 40

3, 21, 144, 987, 6765

5, 55, 610, 6765, 75025 .

21, 987, 46368, 2178309, 102334155

F F F F F

F F F F F

F F F F F

     
 

     
      

 

 

Proceeding to SEQUENCE GRAPHING (use the keystrokes MODE followed by the right arrow 

cursor to option 4: SEQUENCE followed by ENTER), we see an SEQ at the bottom of the 

HOME SCREEN. See FIGURES 11-12: 
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FIGURE 11 FIGURE 12 

 

Next proceed to the Y= EDITOR and input the following as in FIGURE 13 with the Standard 

Viewing Window, Graph, Table Setup, and a portion of the TABLE in FIGURES 14-20: 

 

       
FIGURE 13 FIGURE 14 

 

      
FIGURE 15 FIGURE 16 

 

        
FIGURE 17 FIGURE 18 

 

        
FIGURE 19 FIGURE 20 
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Some Comments on the above screen captures: 
 

1. In FIGURE 13, note that the recursion rule is provided on the line headed by 

1u while the line headed by 1ui  records the initial two terms of the sequence, the second 

followed by the first. There is no comma between the two 1’s in Pretty Print although one 

separates the two initial 1’s with a comma on the entry line. See FIGURE 21: 

 

 
FIGURE 21 
 

2. Note from FIGURE 15 that 5 is the fifth term of the Fibonacci sequence.  

3. Since a sequence is a function whose domain is the set of positive integers, the Tbl Start 

begins at 1 in FIGURE 16. 

4. Only five figures are possible in any cell. Thus all terms of the Fibonacci sequence after the 

twenty-fifth are expressed in scientific notation. If one places their cursor on the output value, 

however, the exact value is determined as in FIGURE 20 where the thirtieth term is given 

exactly as 832040. 

 

Thus if one considers the famous Fibonacci sequence or any Fibonacci-like sequence (that is a 

sequence whose first two terms can be anything one pleases but each term thereafter follows the 

recursion rule in the Fibonacci sequence), form the sum of any six consecutive terms and divide 

this sum by four. We do this for three separate sets and form a conjecture. The results are 

tabulated in the following TABLE: 

SUM OF SIX 

CONSECUTIVE 

FIBONACCI NUMBERS: 

SUM OF THE MEMBERS 

OF THE SET: 

QUOTIENT WHEN THE 

SUM IS DIVIDED BY 4: 

 2,3,5,8,13,21  52 13…FIFTH TERM 

 1,1,2,3,5,8  20 5…FIFTH TERM 

 55,89,144,233,377,610  1508 377…FIFTH TERM 

 

CONJECTURE: The sum of any six consecutive Fibonacci numbers is divisible by 4 and 

the quotient will always be the fifth term in the sequence. 
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Proof: Consider the initial two terms of the Fibonacci sequence to be .x and y  The six 

consecutive terms of the sequence are as follows: , , , 2 , 2 3 , 3 5 .x y x y x y x y x y          We 

employ the VOYAGE 200 to form the sum and divide the resulting sum by 4. See FIGURE 21:  

     
FIGURE 21 

Let us next form the sum of any ten consecutive integers and divide this sum by 11. View this for 

three separate sets and form a conjecture. The results are tabulated below: 

View this for three separate sets and form a 

conjecture. The results are tabulated below: 

SUM OF TEN CONSECUTIVE FIBONACCI 

NUMBERS: 

SUM OF THE 

MEMBERS OF 

THE SET: 

QUOTIENT WHEN 

THE SUM IS 

DIVIDED BY 11: 

 2,3,5,8,13,21,34,55,89,144  374 34…SEVENTH 

TERM 

 1,1,2,3,5,8,13,21,34,55  143 13…SEVENTH 

TERM 

 55,89,144,233,377,610,987,1597,2584,4181  10857 987…SEVENTH 

TERM 

 

CONJECTURE: The sum of any ten consecutive Fibonacci numbers is divisible by 11 and 

the quotient will always be the seventh term in the sequence. 

Proof: Consider the initial two terms of the Fibonacci sequence to be .x and y  The ten 

consecutive terms of the sequence are as follows:

 , , , 2 , 2 3 ,3 5 ,5 8 ,8 13 ,13 21 , 21 34x y x y x y x y x y x y x y x y x y                     Let us 

employ the TI-89 to form the sum and divide the resulting sum by 11. See FIGURES 22-25: 
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FIGURE 22     FIGURE 23 

  
FIGURE 24     FIGURE 25 

Notice 5 8x y    is the seventh term in the sequence which is a neat Fibonacci number trick. 

Let us next form the sum of any fourteen consecutive integers and divide this sum by 29 for three 

separate sets and form a conjecture. The results are tabulated below: 

SUM OF FOURTEEN CONSECUTIVE 

FIBONACCI NUMBERS: 

SUM OF THE 

MEMBERS OF 

THE SET: 

QUOTIENT WHEN 

THE SUM IS 

DIVIDED BY 29: 

 2,3,5,8,13,21,34,55,89,144, 233, 377, 610, 987  2581 89…NINTH TERM 

 1,1,2,3,5,8,13,21,34,55, 89, 144, 233, 377  986 34…NINTH TERM 

55,89,144,233,377,610,987,1597,2584,

4181,6765, 10946, 17711, 28657

 
 
 

 
74936 2584…NINTH 

TERM 

 

CONJECTURE: The sum of any fourteen consecutive Fibonacci numbers is divisible by 29 

and the quotient will always be the ninth term in the sequence. 

Proof: Consider the initial two terms of the Fibonacci sequence to be .x and y  The fourteen 

consecutive terms of the sequence are as follows: 

, , , 2 , 2 3 , 3 5 , 5 8 , 8 13 ,13 21 , 21 34 ,

34 55 , 55 89 , 89 144 , 144 233

x y x y x y x y x y x y x y x y x y

x y x y x y x y

                     
 

            
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The VOYAGE 200 is used to form the sum and divide the total by 29. See FIGURES 26-30: 

  
FIGURE 26     FIGURE 27 

  
FIGURE 28     FIGURE 29 

 
FIGURE 30 

II. If E  represents the set of even integers and O connotes the set of odd integers, then empirical 

evidence for the four possible combinations of addition scenarios: 

, , ,E E E E O O O E O and O O E         and the four possible combinations of 

multiplication scenarios: , , , .E E E E O E O E E and O O O         See FIGURES 31-38 

respectively below with the aid of The VOYAGE 200 CAS Calculator from Texas Instruments: 

  
FIGURE 31     FIGURE 32 
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FIGURE 33     FIGURE 34 

  
FIGURE 35     FIGURE 36 

   
FIGURE 37                     FIGURE 38 

Based on reasoning inductively to a general conclusion via the observations of five specific 

cases, one can conjecture the following displayed in TABLES 1 and 2: 

  E O 

E E O 

O O E 

TABLE 1 

 

  E O 

E E E 

O E O 

TABLE 2 
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To furnish a formal proof, we appeal to the definitions of even and odd integers: 

We will verify each of the four cases. 

(i). To prove that ,E E E   let , .a b E  Then      , . . 2 10 2 11 .k l Z s t a k and b l      

Now  2 2 2 .a b k l k l         , .k l k l     Call .k l s  Hence 

2 .a b s a b E       

(ii). To prove ,O E O   let .a O and b E   One can secure 

   , 2 1 12 2 13 .k l a k and b l        

Next note that    2 2 1 2 2 1 2 1.a b k l k l k l               Observe that 

, .k l k l     Denote .k l s   Hence 2 1 .a b s a b O        

(iii). To show that ,E O E   let .a E and b O   One can thus find 

   , 2 13 2 1 14 .k l a k and b l        

     2 2 1 2 2 2 1 4 2 2 2 .a b k l k l k k l k k l k                        Appealing to the facts 

that , ,k l k l and k l      we obtain 2 .k l k    (Recall that 2 . ) Call 

2 .k l k u     Hence 2 .a b u a b E       

(iv). To prove our final case and demonstrate that ,O O O   let , .a b O  Then by definition, 

   , 2 1 15 2 1 16 .k l a k and b l          Now 

       2 1 2 1 4 2 2 1 4 2 2 1 2 2 1.a b k l k l k l k l k l k l k l                             

Employing the closure properties of ,and in  one is assured that 2 .k l k l      Call 

2 .k l k l v      Thus 2 1 .a b v a b O        

III. We know that the areas and perimeters of rectangles are given by the respective formulas 

 2 2 2 ; .A l w and P l w l w l length and w width            A student in the earlier grades 

might form tables such as the following for the respective perimeters of 20 and 100: 

:l  :w  :P  :A  

10 0 20 0 

9 1 20 9 

8 2 20 16 

7 3 20 21 

6 4 20 24 

5 5 20 25 

4 6 20 24 
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3 7 20 21 

2 8 20 16 

1 9 20 9 

0 10 20 0 

 

:l  :w  :P  :A  

16 0 32 0 

15 1 32 15 

14 2 32 28 

13 3 32 39 

12 4 32 48 

11 5 32 55 

10 6 32 60 

9 7 32 63 

8 8 32 64 

7 9 32 63 

6 10 32 60 

5 11 32 55 

4 12 32 48 

3 13 32 39 

2 14 32 28 

1 15 32 15 

0 16 32 0 

 

Based upon the outcomes in the table, it appears that the area of the largest rectangles having 

respective perimeters of 20 and 32 are the respective 5 5 8 8and  squares. Is this always the 

case; namely that the area of largest rectangle having a given perimeter is necessarily a square 

whose length is one-quarter of the perimeter? Stay tuned. Progressing along, the student of 

algebra can graph the equations for the area utilizing algebra. For example, if 

    220, 2 20 10 10 10 10 .P then l w l w w l A l w A l l A l l                    

Using the TI-84 or the TI-89, one can graph this equation and secure the maximum area (see 

FIGURES 39-48): 

  
FIGURE 39     FIGURE 40 
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FIGURE 41     FIGURE 42 

  
FIGURE 43     FIGURE 44 

  
FIGURE 45     FIGURE 46 

  
FIGURE 47     FIGURE 48 

On the other hand, if

    232, 2 32 16 16 16 16 .P then l w l w w l A l w A l l A l l                    

 Using the TI-84 or the TI-89, one can graph this equation and secure the maximum area (see 

FIGURES 49-59): 
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FIGURE 49     FIGURE 50 

  
FIGURE 51     FIGURE 52 

  
FIGURE 53     FIGURE 54 

  
FIGURE 55     FIGURE 56 

  
FIGURE 57     FIGURE 58 
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FIGURE 59 

Observe that there are constraints on ; 0 0 ;
2 2

P P
l and w namely that l and w    for 

otherwise the other dimension would be negative. Hence for rectangles having perimeters 20 and 

32 respectively, the lengths and widths could not exceed 10 and 16 respectively. We still have 

not resolved the general question; namely what is the area of the largest rectangle having a given 

perimeter ?P We prove using calculus that one always obtains a square each of whose sides has 

length .
4

P
l   

   1 2 2 . 2A l w and P l w       The area formula represents the primary equation; for we are 

seeking to maximize this quantity and the perimeter formula which serves to aid us in our task is 

the secondary equation. Solving (2) for w and substituting into (1), we obtain 

  22
2 2 2 2 .

2 2 2 2

P l P P P l
P l w P l w l w A l l l l

   
                   

 
(3) 

Differentiating (3) with respect to l  and setting 0,
dA

dl
 we obtain 

2 0 2 0 2 .
2 2 2 4

dA P dA P P P
l and l l l

dl dl
              

4

P
l  represents the critical 

number of the area function  .A l Using the second derivative test for relative extrema, we note 

that 
2

2
2 0

4

d A P
l

dl
     leads to a relative maximum of the area function  .A l  Substituting 

this value into (2), one obtains 
2

.
4 4 2 4 4 4 16

P P P P P P P
A
         

              
         

 To see that this is the 

largest possible area, note that since  A l  is a polynomial function and hence continuous over 

and hence over 0, ,
2

P 
 

 
the Extreme Value Theorem guarantees the existence of both an 

absolute maximum M and an absolute minimum m  somewhere over 0, .
2

P 
 
 

 We use the 

Tabular Method below to locate the absolute extrema where the largest of the tabulated values 
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represents the absolute maximum of the area function over the interval and the smallest of the 

tabulated values represents the absolute minimum of the area function over the interval: 

:l  
  2 :

2

P l
A l l


   

0 0 

4

P
 

2

16

P
 

2

P
 

0 

 

Note that 

2

2 2 2 2
2 2 0.

2 2 2 2 4 4 4

P PP
P P P P P

A

 
 

             
   

 Hence the maximum area is 

obtained when one has a 
4 4

P P
  square. 

IV. If we add successive unit fractions with even denominators, starting with 
1

2
, we obtain the 

following for fifteen iterations in FIGURES 60-62: 

    
FIGURE 60     FIGURE 61 

 
FIGURE 62 

Similarly if we add successive unit fractions with odd denominators starting with 1/3, we obtain 

the following for fifteen iterations in FIGURES 63-65:  
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FIGURE 63     FIGURE 64 

 
FIGURE 65 

Consider the numerators and denominators of the sums obtained in FIGURES 60-65. We find 

that all form the legs of Primitive Pythagorean Triangles. In FIGURES 66-75, we show that the 

sum of the squares of the numerators and denominators of each of these fractions is a perfect 

square and hence a Pythagorean Triple is formed. Moreover, since  , , 1a b c   in the sense that 

there are no common integer factors other than 1 among the components, the triples are classified 

as Primitive Pythagorean triples. 

  
FIGURE 66     FIGURE 67 

  
FIGURE 68     FIGURE 69 
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FIGURE 70     FIGURE 71 

  
FIGURE 72     FIGURE 73 

  
FIGURE 74     FIGURE 75 

Are these results always true and are all Primitive Pythagorean Triples obtained in this manner? 

The answers are YES and NO respectively. The latter question can be resolved by noting that the 

PPT (77, 36, 85) is not generated by this process. See FIGURE 76 below. See FIGURES 78-81 

for a general proof considering the cases of the sum of consecutive even unit fractions and the 

sum of consecutive odd unit fractions separately with FIGURE 77 displaying the relevant 

Algebra Menu F2 on the TI-89/VOYAGE 200. 

 
FIGURE 76  

One can show that the following is true in general. If we consider that any even integer is of the 

form 2 m  for some integer m  and any odd integer is of the form 2 1n   for some integer ,n  
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then we have the following for the sum of two unit fractions with consecutive even 

denominators: 

2

1 1 2 1
.

2 2 2 2 2

m

m m m m

 
 

     
 Taking the sum of the squares of the numerator and denominator 

of this fraction, we note 

     
2 22 2 4 3 2 22 1 2 2 4 8 8 4 1 2 2 1 .m m m m m m m m m                     Hence one 

obtains the Primitive Pythagorean triple  2 22 1, 2 2 , 2 2 1 .m m m m m          

For the sum of two unit fractions with consecutive odd denominators, we observe the following: 

2

1 1 4 4
.

2 1 2 3 4 8 3

n

n n n n

 
 

       
 Taking the sum of the squares of the numerator and 

denominator of this fraction, we note that 

     
2 22 2 4 3 2 24 4 4 8 3 16 64 104 80 25 4 8 5 .n n n n n n n n n                      Thus 

one obtains the Primitive Pythagorean Triple  2 24 4, 4 8 3, 4 8 5 .n n n n n           

  
FIGURE 77     FIGURE 78 

  
FIGURE 79     FIGURE 80 

 
FIGURE 81 
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V. For your convenience, here are the first five rows of Pascal’s Triangle: 

                                               1 

     1                  1   

                               1               2              1                 

                         1           3                  3           1           

                   1          4               6                4           1 

               1        5           10                10           5         1  

Based on the initial five rows of Pascal’s Triangle, the next five rows are displayed. Let us write 

Rows 0-10 as follows: 

1           

1 1          

1 2 1         

1 3 3 1        

1 4 6 4 1       

1 5 10 10 5 1      

1 6 15 20 15 6 1     

1 7 21 35 35 21 7 1    

1 8 28 56 70 56 28 8 1   

1 9 36 84 126 126 84 36 9 1  

1 10 45 120 120 252 210 120 45 10 1 

 

In the following table, we determine the parity of the entries in the initial twenty-five rows of 

Pascal’s Triangle where O and E denote the respective odd and even numbered entries.   

O                         

O O                        
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O E O                       

O O O O                      

O E E E O                     

O O E E O O                    

O E O E O E O                   

O O O O O O O O                  

O E E E E E E E O                 

O O E E E E E E O O                

O E O E E E E E O E O               

O O O O E E E E O O O O              

O E E E O E E E O E E E O             

O O E E O O E E O O E E O O            

O E O E O E O E O E O E O E O           

O O O O O O O O O O O O O O O O          

O E E E E E E E E E E E E E E E O         

O O E E E E E E E E E E E E E E O O        

O E O E E E E E E E E E E E E E O E O       

O O O O E E E E E E E E E E E E O O O O      

O E E E O E E E E E E E E E E E O E E E O     

O O E E O O E E E E E E E E E E O O E E O O    

O E O E O E O E E E E E E E E E O E O E O E O   

O O O O O O O O E E E E E E E E O O O O O O O O  

O E E E E E E E O E E E E E E E O E E E E E E E O 
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Our next goal is to tabulate in each row of the triangle constructed above the numbers of odd 

entries, even entries, total entries, the cumulative number of odd entries, even entries and total 

entries and the ratio of the cumulative number of even and odd entries to the cumulative to the 

cumulative total. Recall that the initial row is considered row 0. We extend the triangle to the 

thirty-second row and observe some neat patterns. The analysis of the patterns is then employed 

to form some nice conjectures. 

Row # of Odds # of      

Evens 

Total Cum # 

of Odds 

Cum # 

of Evens 

Cum # Ratio of 

Cum Odds 

to Cum #  

Ratio of 

Cum Evens 

to Cum # 

0 1 0 1 1 0 1 1/1 0/1 

1 2 0 2 3 0 3 3/3 0/3 

2 2 1 3 5 1 6 5/6 1/6 

3 4 0 4 9 1 10 9/10 1/10 

4 2 3 5 11 4 15 11/15 4/15 

5 4 2 6 15 6 21 15/21 6/21 

6 4 3 7 19 9 28 19/28 9/28 

7 8 0 8 27 9 36 27/36 9/36 

8 2 7 9 29 16 45 29/45 16/45 

9 4 6 10 33 22 55 33/55 22/55 

10 4 7 11 37 29 66 37/66 29/66 

11 8 4 12 45 33 78 45/78 33/78 

12 4 9 13 49 42 91 49/91 42/91 

13 8 6 14 57 48 105 57/105 48/105 

14 8 7 15 65 55 120 65/120 55/120 

15 16 0 16 81 55 136 81/136 55/136 

16 2 15 17 83 70 153 83/153 70/153 

17 4 14 18 87 84 171 87/171 84/171 
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18 4 15 19 91 99 190 91/190 99/190 

19 8 12 20 99 111 210 99/210 111/210 

20 4 17 21 103 128 231 103/231 128/231 

21 8 14 22 111 142 253 111/253 142/253 

22 8 15 23 119 157 276 119/276 157/276 

23 16 8 24 135 165 300 135/300 165/300 

24 4 21 25 139 186 325 139/325 186/325 

25 8 18 26 147 204 351 147/351 204/351 

26 8 19 27 155 223 378 155/378 223/378 

27 16 12 28 171 235 406 171/406 235/406 

28 8 21 29 179 256 435 179/435 256/435 

29 16 14 30 195 270 465 195/465 270/465 

30 16 15 31 211 285 496 211/496 285/496 

31 32 0 32 243 285 528 243/528 285/528 

32 2 31 33 245 316 561 245/561 316/561 

 

A number of interesting conjectures can be formed via the analysis of the above table: 

1. The entries in rows 1, 3, 7, 15, and 31 are all odd. One can correctly conjecture that the only 

rows where all the entries are odd are of the form 2 1; .n n   

2. The entries in rows 2, 4, 6, 8, 16, and 32 with the exception of the first and last entries which 

are both 1 are even. This in general occurs in rows of the form 2 ;n n and is an immediate 

consequence of the first conjecture and the binomial identity 

     , 1, 1 1, ; .C n r C n r C n r r n       

3. With the exception of Row 0, the number of odd entries in any row of Pascal’s Triangle is 

always even. This is a consequence of the symmetry of the binomial coefficients as manifested 

by the identity    , , .C n r C n n r    

4. The number of odd entries in any row of Pascal’s Triangle is a power of two. 



26 
 

5. The ratio of the cumulative total of even entries to the total number of entries approaches 1 as 

the number of rows in the triangle gets large. To cite some examples, the cumulative total of 

even entries to total entries is 1351/2080 by the time we reach row sixty-four and 6069/8028 

when we reach row one hundred twenty-eight. 

 

Based on the entries in Pascal’s triangle written in rectangular fashion, the initial five diagonals 

(left and right) contain the respective entries 1, 1, 1, 1, 1,…; 1, 2, 3, 4, 5,…; 1, 3, 6, 10, 15, 21, 

28,…; 1, 4, 10, 20, 35, 56, 84, 120; and 1, 5, 15, 35, 70, 126, 210,… One can find a polynomial 

model that fits the data with perfect correlation every time! The respective polynomials are 

           1 1 2 1 2 3
1, , ,

2 6 24

n n n n n n n n n
n and

           
 respectively. In other words, the 

entries along the first, second, third, fourth and fifth diagonals (left and right) model constant, 

linear, quadratic, cubic, and quartic polynomials respectively. One can utilize the method of 

successive (finite) differences to observe that the set of zero, first, second, third and fourth 

differences are constant respectively. For example, let us consider the entries along the fifth 

diagonal; namely 1, 5, 15, 35, 70, 126, 210, …. To see that this set of data models a quartic 

(fourth degree) polynomial, we consider the ordered pairs where the first, second, third, fourth, 

fifth terms respectively are 1, 5, 15, 35, 70 and 126. This leads to the ordered pairs 

         1,1 , 2,5 , 3,15 , 4,35 5,70 .and  One needs five distinct data points to secure a fourth 

degree polynomial since the form for quartics is   4 3 2 .y f x A x B x C x D x E           

Observe the five unknown constants , , ,A B C D and E need to be determined. 

 

Sequence:                             1          5          15          35          70          126          210 

Set of First Differences:             4         10           20          35         56            84                           

Set of Second Differences:             6            10           15        21            28 

Set of Third Differences:                       4             5            6             7 

Set of Fourth Differences:                               1            1           1 

If we choose the first five ordered pairs, this leads to the 5 5  linear system: 

1

16 8 4 2 5

81 27 9 3 15

256 64 16 4 35

625 125 25 5 70

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

    

    

    

    

    

 

Using the VOYAGE 200 (one could have also used the TI-84), we solve our linear system. See 

FIGURES 82-88: 
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FIGURE 82     FIGURE 83  

  
FIGURE 84     FIGURE 85 

  
FIGURE 86     FIGURE 87 

 
FIGURE 88 

Observe that   4 3 21 1 11 1

24 4 24 4
y f x x x x x         which fits these data points. If we factor 

the expression via the VOYAGE 200, we obtain the factored form in FIGURES 89-90:  
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FIGURE 89     FIGURE 90 

In general, one can show by mathematical induction that the entries on the k-th diagonals of 

Pascal’s triangle fit the polynomial model  
       1 2 3 ... 1

.
!

x x x x x k
y f x

k

        
    

We determine the entries in the first five rows of the triangle and both the sum and cumulative 

sum of the entries in the initial five rows. See FIGURES 91-96: 

  
FIGURE 91     FIGURE 92 

  
FIGURE 93     FIGURE 94 

   
FIGURE 95     FIGURE 96 

VI. Consider the calendar for the month of MARCH 2015 below: 
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MARCH 2015 

S M T W R F S 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

       

 

a. We select several 3 3 groups of numbers and find the sum of these numbers and determine 

how the obtained sums are related to the middle number. 

We first consider the group highlighted in blue above. The integers are 8, 9, 10, 15, 16, 17, 22, 

23 and 24 with the middle number being 16. Adding these nine numbers, we obtain 

8 9 10 15 16 17 22 23 24 144 9 16.            

Let us next select a second 3 3 group of numbers highlighted in green below. These numbers 

are 11, 12, 13, 18, 19, 20, 25, 26 and 27 with 19 serving as the middle number. We note that 

11 12 13 18 19 20 25 26 27 171 9 19.            

 

                                              MARCH 2015 

S M T W R F S 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

       

We finally select a third 3 3 group of numbers highlighted in red below. These numbers are 12, 

13, 14, 19, 20, 21, 26, 27 and 28 where 20 is the middle number. Note that 

12 13 14 19 20 21 26 27 28 180 9 20.            
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                                              FEBRUARY 2015 

S M T W R F S 

1 2 3 4 5 6 7 

8 9 10 11 12 13 14 

15 16 17 18 19 20 21 

22 23 24 25 26 27 28 

       

b. We next prove that the sum of any 9 digits in any 3 3  set of numbers selected from a 

monthly calendar will always be equal to 9 times the middle number using both algebra and 

technology to furnish a convincing argument. 

Based on our analysis of three specific cases, it seems plausible to conjecture that the sum of any 

nine elements in the 3 3 group is always nine times the middle number. To show that this is 

always true, one can employ algebraic reasoning. We let x   the first number in the array. The 

next numbers are thus 1, 2, 7, 8, 9, 14, 15 16.x x x x x x x and x         Next note that 

 1 2 7 8 9 14 15 16 9 72 9 8 .x x x x x x x x x x x                      Observe that

8x is the median (middle number) in the array completing our proof.   

Technology can play a role as well. Let us use a graphing calculator (TI-89) to furnish the 

specific cases as well as a formal proof. See FIGURES 97-100: 

   
FIGURE 97     FIGURE 98 

  
FIGURE 99     FIGURE 100 
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VII. We determine if each of the following statements is true or false. If it is true, construct a 

formal proof. For all false statements, determine an appropriate counterexample and explain 

what needs to be altered to make the false statements true. 

(a). The product of any three integers is divisible by 2 is false. Consider the odd integers 3, 5 and 

7. Then 3 5 7 105 2 | 105.and    On the other hand, the product of three consecutive integers is 

divisible by 2. In addition, the product of three integers, two of which are of even parity is even 

and hence is divisible by 2. Likewise, the product of three integers such that two are of odd 

parity is even and hence is divisible by 2. 

(b). The sum of four consecutive integers is divisible by 4 is false. Consider the consecutive 

integers 5, 6, 7 and 8. Then 5 6 7 8 26 4 | 26.and     Moreover, the sum of four consecutive 

integers is NEVER divisible by 4. To see this, we appeal to the algebra of remainders. In any 

string of four consecutive integers, if the first is evenly divisible by four, the second will have a 

remainder of one upon division by four, the third will have a remainder of two upon division by 

four and the fourth will have a remainder of three upon division by four. A similar proof can be 

constructed in the respective cases where the first integer in the sequence has a remainder of one, 

two and three upon division by 4. Just shift accordingly. Hence the sum of the remainders will be 

six which when reduced modulo four is two. It is true that the sum of any four consecutive 

integers is always even and thus divisible by two.      

(c). The product of four consecutive integers plus one is always a perfect square is indeed true. 

Let the consecutive integers be denoted respectively by , 1, 2 3.n n n and n    Then 

       
2

4 3 2 21 2 3 1 6 11 6 1 3 1 .n n n n n n n n n n                   This can be verified 

using the TI-89/VOYAGE 200. See FIGURES 101-102: 

   
FIGURE 101     FIGURE 102 

(d). The sum of two prime numbers is never a prime number is false! Consider the prime integers 

2 and 5. Then 2 5 7  which is also a prime number. What is true is that the sum of two odd 

prime numbers is never a prime; for such a sum yields an even integer which is greater than two 

and hence has two as a divisor and thus is not prime.   

(e). The sum of five consecutive integers is divisible by 5 is indeed true; for if we denote the five 

consecutive integers by , 1, 2, 3 4,n n n n and n    then 

         1 2 3 4 5 10 5 2 .n n n n n n n              Notice that the sum of the five 
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consecutive integers is five times the median which is 2.n  One can verify this via our graphing 

calculator. See FIGURE 103: 

 
FIGURE 103 

(f). If the sides of a right triangle are tripled, then both the perimeter and area of the right triangle 

are tripled is false. While the perimeter is indeed tripled, the area is increased nine-fold. To cite 

an example, consider the 3-4-5 right triangle. Note that 2 2 23 4 9 16 25 5 .     This triangle 

has a perimeter of 12  3 4 5 12P a b c       and an area of 6 

1 1 1
3 4 12 6 .

2 2 2
A a b

 
         

 
Tripling the sides of the 3-4-5 right triangle yields the similar 

right triangle 9-12-15. The perimeter is 36 and the area is 54. The new perimeter is three times 

the original perimeter while the new area is nine times the original area. FIGURE 104 utilizing 

the graphing calculator can furnish a formal proof where the area of any right triangle is equal to 

the product of its legs while the perimeter is the sum of all of its sides. Let the legs be denoted by 

a and b and the hypotenuse by .c  

  
FIGURE 104 
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